[Japanese]
 東京工業大学 土質研究室 ウェブサイト
(2022年4月11日以降は,こちらが正式なウェブサイトとなります)
 URL: https://sites.google.com/view/geotech-cv-titech/


[English]
 Website of the Soil Mechanics and Geotechnical Engineering Group ,
Tokyo Institute of Technology
 (The site here will not be updated.
The site below is the official one on and after April 11th, 2022)
 URL: https://sites.google.com/view/geotech-cv-titech/


Introduction


「土質研」は、教員ごとの研究室単位ではなく伝統的にグループとして活動・行事を行っており現在は、土木環境工学系の北詰、竹村、高橋、笠間研究室の計4研究室、合計約35名ほどの大勢の教員・学生を主体に活動している。

 毎年9月には伊豆旅行、3月後半には卒業旅行と年2回の旅行を行っているほか、毎年秋にはジオテク三上杯と呼ばれる土木学会地盤型グループ対抗のバレーボール大会や関東周辺の大学対抗で行われる土質研ソフトボール大会、鉄道総合技術研究所とのサッカー対抗試合などその他様々なイベントに参加している。

 そして、毎年1月には全土質研および歴代OBも交えた土質研究室新年会を行っている。これは40年以上続いており、毎年100名以上の参加者で、年次を超えた連携を生んでいる。

The Soil Mechanics and Geotechnical Group in Tokyo Tech is currently composed of research laboratories individually supervised by Prof. Masaki Kitazume, Assoc. Prof. Jiro Takemura, Prof. Akihiro Takahashi and Assoc. Prof. Kiyonobu Kasama. Although the Group has four distinct laboratories, most activities, academic or otherwise are held as a group, with around 30 active members.

Traditional events include a bi-annual laboratory trip to Izu, every September. A trip is also held late March as a parting event for the laboratory’s new graduates.

The Group also participates in many sporting events and tournaments with other universities and institutes namely the softball and volleyball tournaments during the Fall Semester with other soil laboratories in the Kanto region, and various other football games against the Railway Technical Research Institute.

At the start of each year, the group welcomes back its former students wherein over 100 alumni from the 40-year history of the laboratory participates, enforcing a strong connection with its current members.

Page Top

About Research

研究室では様々な土質、地盤分野の研究を行っている。最近では地盤改良、河川堤防の浸透問題,浅い基礎、深い基礎の耐震性、液状化対策に関する研究を継続的に進めている。

又、これらの研究は主に遠心模型装置を用いて行っている。土質研究室では昭和45年に遠心模型実験装置 (→About Centrifuge)を導入してから、遠心装置を用いた研究を40年近く継続しており、常に世界的に高いレベルを維持している。

最近の研究テーマについては各年の研究タイトルのページを参照してください。(→Research)

Currently, the Tokyo Tech soil laboratory is one of the few university-laboratories in Kanto region to own a beam type centrifuge machine (→About Centrifuge). The centrifuge technology, which was first instated in the laboratory in the 1970s, has continued to be employed in most research endeavors of students from the undergraduate school to the graduate school, giving a competitive-edge in the quality of their research output.

As far as research interests are concerned, the laboratory has produced and is currently involved with a wide-ranging soil mechanics and geotechnical engineering problems. Ongoing research involves on topics of earthquake resistance of underground structures, shallow and deep foundations, liquefaction countermeasures, intermediate soil behaviors. For more information about the research themes, visit the research tab in our webpage.(→Research)

Page Top

About Centrifuge

通常、地盤の挙動はその自重、またはその上の構造物の重量によるものが主な要因である。しかし、実地盤をそのまま縮小した模型では力学的に、又、幾何学的にも相似する物ではなく、実際の挙動とは大きく異なる。そこで、遠心装置を用い小型模型に遠心加速度を作用させることによって、縮小した模型でも実物と同様の地盤応力を再現することが可能である。地盤工学の分野における、地盤挙動観測のための一手法として、近年、急速に発達してきた分野であり、東京工業大学土質研究室でも1970年から導入され現在まで40年以上の歴史を誇る。またアクティブ方せん断土槽(1998)、水平-鉛直2方向振動台(2000)、水平-鉛直-モーメント3成分ジャッキ(2002)などの各種装置を世界に先駆けて開発し、地盤工学における様々な問題の解明に取り組んでいる。

MarkV

Physical modelling plays an important role in geotechnical engineering specifically in the investigation of development process of phenomena, parametric studies, investigation of a new phenomenon and verification of analytical or numerical methods.

However, it could not be simulated properly with model tests under an ordinary gravity field, as self-weight is dominant load in geotechnical engineering problems and confining pressures generated by it govern behaviour of soil mass.

In order to replicate the gravity-induced stresses of a prototype in a 1/n reduced model, it is necessary to test in a high gravitational field n times larger than that of prototype. A centrifuge is thought to be a most convenient tool to make a high acceleration field in a model. This idea was applied for the first time in 1930s, in the field of the geotechnical engineering by P.B.Bucky (1931) and G.I.Pokrovsky (1932). Since then, a number of geotechnical centrifuges have been installed in research institutes all over the world. Centrifuge modelling has become one of the powerful tools for physical modelling.

In Japan, the first geotechnical centrifuge was built by Prof. Mikasa in 1965. The second centrifuge was constructed at Tokyo Institute of Technology a few years later in 1970 by Prof Yamaguchi. It was called Mark I Centrifuge. “Mark I” is now working at Utsunomiya University. In 1981, the second centrifuge machine called “Mark II” was completed in the laboratory. This machine is now with Saitama University.

Currently, the in-house centrifuge machine in the laboratory is called “Mark III” which is a beam type centrifuge having a pair of parallel arms that hold platforms on which the model container and a weight for counterbalance are mounted as shown in the following figure. The radius of rotation is 2.45m, which is the distance from the rotating shaft to the platform base. The surface of the swinging platform is always normal to the resultant acceleration of the centrifugal acceleration, ng, and Earth's gravity. Specifications of the centrifuge are summarized in the following table.

Mark III Specifications

Radius

Platform radius

2.45m

Effective radius

2.0 - 2.2m

Platform dimensions

Width

0.90m

Depth

0.90m

Maximum height

0.97m

Capacity

Maximum payload

50g.ton

Maximum number of rotations

300rpm

Maximum payload at 80-g

600kg

Electrical slip rings

For operation

18 chs

Rotary joints

Number of ports for air and water

2

Working pressure for air and water

1MPa

Number of ports for oil

2

Working pressure for oil

21MPa

Optical rotary joints

Number of ports

4

For data acquisition, two types of signal transmission methods are used. One is classical electrical slip rings. Transducers are connected to the slip rings through a junction box and signals are transferred to amplifiers on the laboratory floor. The other type is an optical rotary joint. Transducers are connected to signal conditioners on the centrifuge. Analog signals from the transducers are amplified there and then are converted to digital signals by A/D converters. Gains and the other conditions of the signal conditioners can be controlled by a PC on the lab. floor. The digital signals are transferred to the PC on the lab. floor through the optical rotary joint.

A hydraulic rotary joint with maximum pressure of 20.5MPa mounted on the centrifuge is used for charging and discharging oil to the centrifuge during spinning of the centrifuge. Two four-liter hydraulic accumulators are mounted on the centrifuge to satisfy the required flow rate of the pressurized oil for the active type shear box and a horizontal--vertical 2D shaker.

Shear how active and (1998), horizontal - Shaking in two directions perpendicular (2000), horizontal - vertical - Jack three components Moment (2002) first developed the world's various devices, such as the various problems in geotechnical engineering working on the elucidation of.

Page Top

How to Join

東工大土木・環境工学系から土質研究室に所属したい方

 土質研に興味を持った方、まだ希望の研究室を決めかねている方、是非研究室までいらしてください。
担当の先生に相談したり先輩に研究室の様子など聞いてみてください。
メールでの質問や研究室訪問のアポイントはいつでも受け付けています。

(→研究室の場所 , →メール )

他大学、東工大の他専攻から土質研究室に所属したい方

 大学院土木・環境工学系の院試に合格しなければなりません。土木工学の一般的な知識を問う問題が出題されます。詳しくは当大学及び専攻のホームページの入試関連のページをご覧ください。また、質問や研究室訪問はいつでも受け付けています。

(→土木工学専攻ホームページへ研究室の場所メール )

Page Top